INSTRUMENTAL VARIABLES I

PMAP 8521: Program Evaluation for Public Service November 11, 2019

Fill out your reading report on iCollege!

PLAN FOR TODAY

Endogeneity and exogeneity

Instruments

Using instruments

IV regression with R

ENDOGENEITY & EXOGENEITY

OUR FAVORITE QUESTION

Does education cause higher earnings?

Earnings_i =
$$\beta_0 + \beta_1$$
Education_i + ϵ_i
Outcome variable

Policy/program variable

Would β_1 in this regression give us the causal effect of the program?

$$Earnings_i = \beta_0 + \beta_1 Education_i + \epsilon_i$$

Omitted variable bias!

Selection bias!

Endogeneity!

TYPES OF VARIATON

Exogenous variables

Value is not determined by anything else in the model

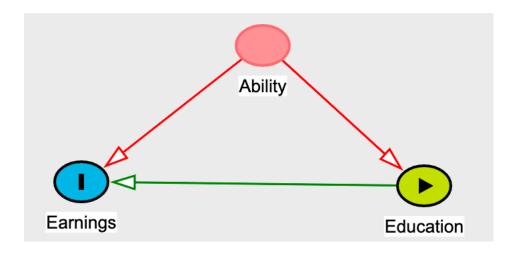
In a DAG, a node that doesn't have arrows coming into it

TYPES OF VARIATON

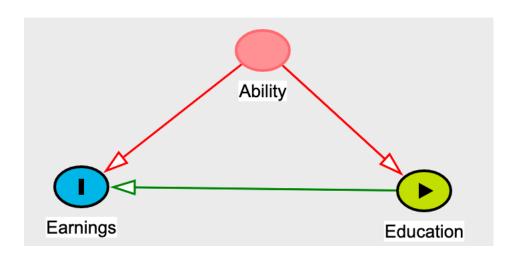
Endogenous variables

Value is determined by something else in the model

In a DAG, a node that has arrows coming into it

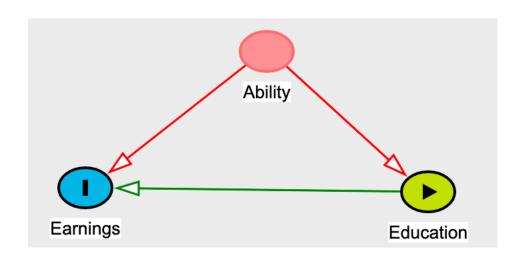


We'd like education to be exogenous (an outside decision or intervention), but it's not!



Part of it is exogenous, but part of it is caused by ability, which is in the model

How can we fix the endogeneity?



Close back door and adjust for ability

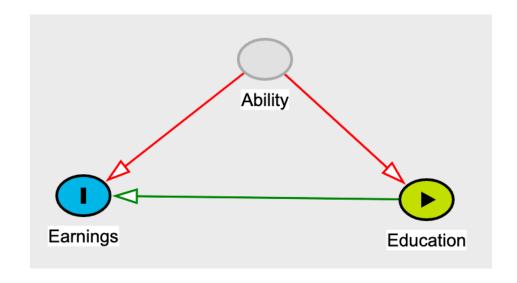
Filters out the endogenous part of education and leaves us with just the exogenous part

	Dependent variable:				
	W	vage			
	(1)	(2)			
educ	12.240***	9.242***			
	(0.503)	(0.343)			
ability		0.258^{***}			
v		(0.007)			
Constant	-53.085***	-80.263***			
	(8.492)	(5.659)			
Observations	1,000	1,000			
\mathbb{R}^2	0.372	0.726			
Adjusted R^2	0.371	0.726			
Residual Std. Error	35.646 (df = 998)	23.539 (df = 997)			
F Statistic	$591.469^{***} (df = 1; 998)$	$1,323.969^{***} (df = 2; 997)$			

Note:

*p<0.1; **p<0.05; ***p<0.01

But what if we can't measure ability?



Unmeasurable!

$$Earnings_i = \beta_0 + \beta_1 Education_i + \beta_2 Ability + \epsilon_i$$

$$Earnings_i = \beta_0 + \beta_1 Education_i + \epsilon_i$$

Ability is in here

What would exogenous variation in education look like?

Choices to get more education that are essentially random (or at least uncorrelated with omitted variables)

What if we could split education into exogenous and endogenous parts?

Earnings_i =
$$\beta_0 + \beta_1$$
Education_i + ϵ_i

$$\beta_0 + \beta_1$$
(Education_i^{exog.} + Education_i^{endog.}) + ϵ_i

$$\beta_0 + \beta_1$$
Education_i^{exog.} + β_1 Education_i^{endog.} + ϵ_i

 $\beta_0 + \beta_1 \text{Education}_i^{\text{exog.}} + w_i$

How do we isolate the exogenous part of education?

$$Earnings_i = \beta_0 + \beta_1 Education_i^{exog.} + w_i$$

Use an instrument!

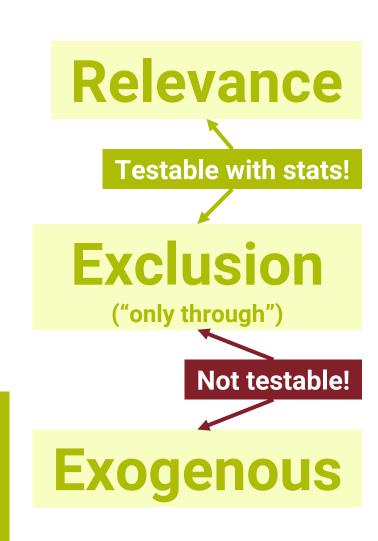
INSTRUMENTS

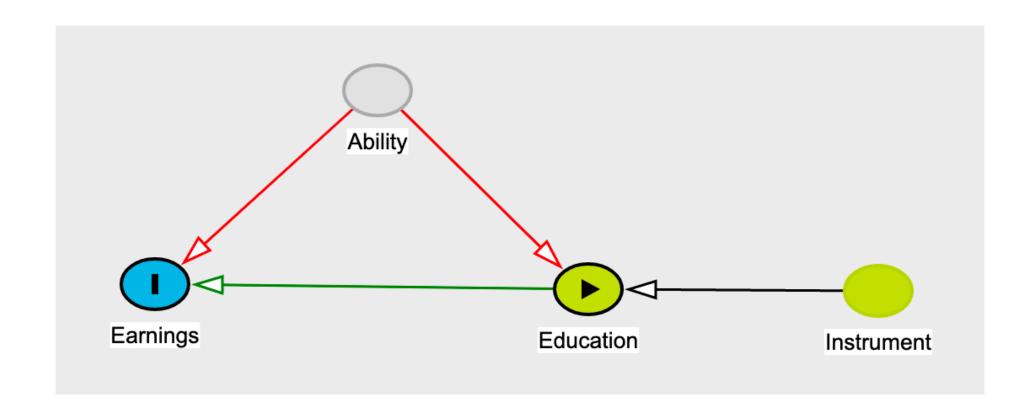
WHAT IS AN INSTRUMENT?

Something that is correlated with the policy variable

Something that does not directly cause the outcome

Something that is not correlated with the omitted variables





RELEVANCY

Instrument causes changes in policy

Social security number

3rd grade test scores

Father's education

Probably not relevant

Uncorrelated with education

Potentially relevant

Early grades cause more education

Relevant

Educated parents cause more education

EXCLUSION

Instrument doesn't directly cause outcome

("only through")

Social security number

3rd grade test scores

Father's education

Exclusive

SSN isn't correlated with hourly wage

Potentially exclusive

Early grades probably don't cause wages

Exclusive

Parent's education doesn't correlate with your hourly wage

EXOGENEITY

Instrument independent of all other factors; is randomly assigned

Social security number

3rd grade test scores

Father's education

Exogenous

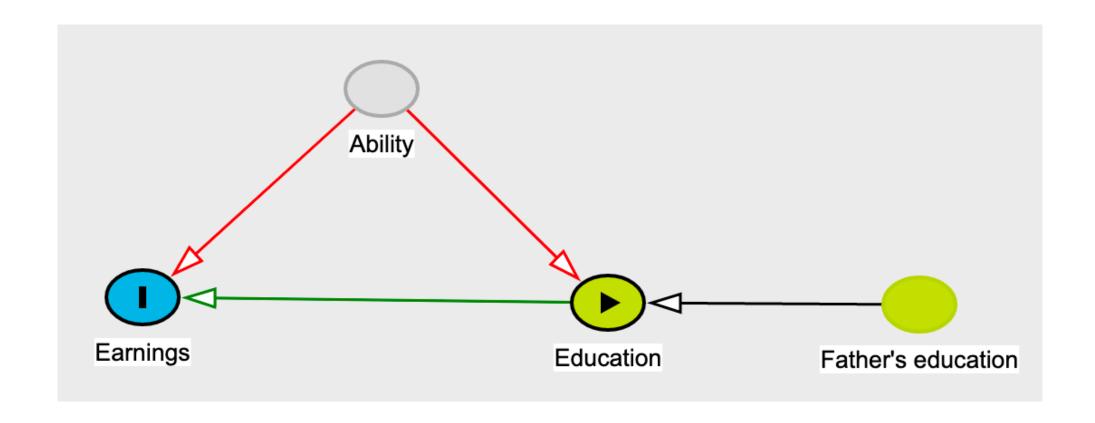
Unrelated to anything related to education

Not exogenous

Grades correlated with other education factors

Exogenous

Birth to parents is random



Relevant Exclusive Exogenous

THE HUH? FACTOR

"A necessary but not a sufficient condition for having an instrument that can satisfy the exclusion restriction is if people are confused when you tell them about the instrument's relationship to the outcome."

Scott Cunningham, Causal Inference: The Mixtape, p. 213

Outcome variable	Policy variable	Omitted variable	Instrumental variable
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes
Labor market success	Americanization	Ability	Scrabble score of name
Crime rate	Patrol hours	# of criminals	Election cycles
Income	Education	Ability	Father's education
		Distance to college	
		Military draft	
Crime	Incarceration rate	Simultaneous causality	Overcrowding litigations
Election outcomes	Federal spending in a district	Political vulnerability	Federal spending in the rest of the state
Conflicts	Economic growth	Simultaneous causality	Rainfall

USING INSTRUMENTS

$Earnings_i = \beta_0 + \beta_1 Education_i + \epsilon_i$

	Dependent variable:				
	W	rage			
	(1)	(2)			
educ	12.240***	9.242***			
	(0.503)	(0.343)			
ability		0.258^{***}			
·		(0.007)			
Constant	-53.085***	-80.263***			
	(8.492)	(5.659)			
Observations	1,000	1,000			
\mathbb{R}^2	0.372	0.726			
Adjusted R^2	0.371	0.726			
Residual Std. Error	35.646 (df = 998)	23.539 (df = 997)			
F Statistic	$591.469^{***} (df = 1; 998)$	$1,323.969^{***} (df = 2; 997)$			

Note:

*p<0.1; **p<0.05; ***p<0.01

Earnings_i =
$$\beta_0 + \beta_1$$
Education_i + ϵ_i

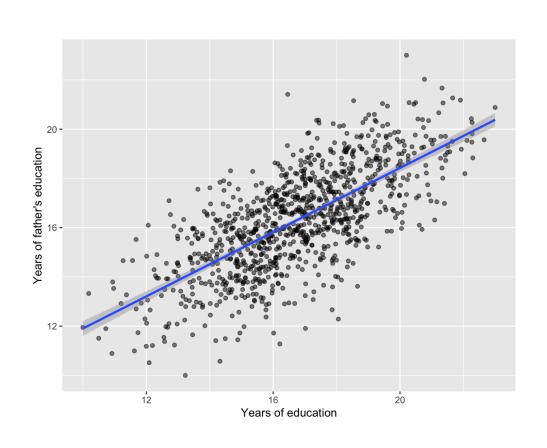
$$\beta_0 + \beta_1$$
(Education_i exog. + Education_i endog.) + ϵ_i

$$\beta_0 + \beta_1$$
Education_i exog. + β_1 Education_i endog. + ϵ_i

$$\beta_0 + \beta_1 \text{Education}_i^{\text{exog.}} + w_i$$

RELEVANCY

Policy ~ instrument



model_first <- lm(educ ~ fathereduc, data = dat)
tidy(model_first)</pre>

term		std error		n value
(Intercept)	Clear,	significal	nt effect	= relevant!
fathereduc	0.757	0.0243	31.2	1.54e-149

glance(model_first)

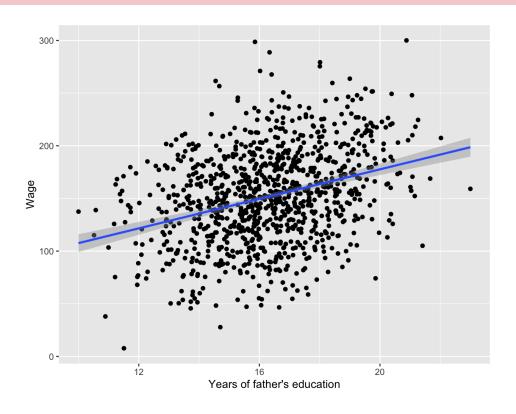
F statistic > 10 = strong instrument

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC
0.493	0.493	1.6	972	1.54e- 149	2	-1.89e+03	3.78e+03

EXCLUSION

Does it meet exclusion assumption?

Father's education causes wages only through education



EXOGENEITY

What would exogeneity of father's education look like?

Compare person A and person B and claim that the differences between them are solely because of their fathers' years of education

TWO-STAGE LEAST SQUARES (2SLS)

Find exogenous part of policy variable based on instrument, use that to predict outcome

"Education hat": fitted/predicted values; exogenous part of education

$$\widehat{\text{Education}}_i = \gamma_0 + \gamma_1 \text{Father's education}_i + v_i$$

1st stage

$$Earnings_i = \beta_0 + \beta_1 \widehat{Education}_i + \epsilon_i$$

2nd stage

Stage 1: Policy ~ instrument

first_stage <- lm(educ ~ fathereduc, data = dat)
tidy(first_stage)</pre>

term	estimate	std.error	statistic	p.value
(Intercept)	4.4	0.399	11	9.26e-27
fathereduc	0.757	0.0243	31.2	1.54e-149

Add predicted education

dat_with_predictions <- augment_columns(first_stage, dat)
head(dat_with_predictions)</pre>

wage	educ	fathereduc	.fitted	.se.fit	.resid	.hat	.sigma	.cooksd	.std.resid
146	18.1	17.2	17.4	0.0547	0.67	0.00118	1.6	0.000104	0.42
148	15.8	14	15	0.0752	0.862	0.00222	1.6	0.000326	0.541
162	15.1	16	16.5	0.051	-1.4	0.00102	1.6	0.000391	-0.876
105	16.5	21.4	20.6	0.134	-4.15	0.00708	1.59	0.0242	-2.61
168	18.8	16.5	16.9	0.0506	1.94	0.00101	1.6	0.000746	1.22
173	16	15.4	16.1	0.0546	-0.0553	0.00117	1.6	7.05e-07	-0.0347

Stage 2: Outcome ~ predicted policy

second_stage <- lm(wage ~ .fitted, data = dat_with_predictions)
tidy(second stage)</pre>

term	estimate	std.error	statistic	p.value
(Intercept)	-3.11	14.4	-0.216	0.829
.fitted	9.25	0.856	10.8	7.49e-26

	(1)	(2)	(3)
(Intercept)	-53.085 ***	-80.263 ***	-3.108
	(8.492)	(5.659)	(14.370)
educ	12.240 ***	9.242 ***	
	(0.503)	(0.343)	
ability		0.258 ***	
		(0.007)	
.fitted			9.252 ***
			(0.856)
N	1000	1000	1000
R2	0.372	0.726	0.105
logLik	-4991.572	-4576.101	-5168.868
AIC	9989.144	9160.202	10343.735

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

IV REGRESSION WITH R