COUNTERFACTUALS AND DAGS II

PMAP 8521: Program Evaluation for Public Service September 30, 2019

Fill out your reading report on iCollege!

PLAN FOR TODAY

Causal models

Backdoors and adjustment

Bad controls

Potential outcomes

Questions!

CAUSAL MODELS

What is the causal effect of an additional year of education on earnings?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Step 4: Use logic and math to determine which nodes and arrows to measure

1. LIST VARIABLES

Education (treatment)

Earnings (outcome)

List anything that's relevant

Things that cause or are caused by treatment, especially if they're related to both treatment and outcome

You don't have to actually observe or measure them all

1. LIST VARIABLES

Education (treatment)

Earnings (outcome)

Location

Ability Demographics

Socioeconomic status

Year of birth

Compulsory schooling laws

Job connections

2. SIMPLIFY

Education (treatment)

Earnings (outcome)

Location

Ability

Demographics

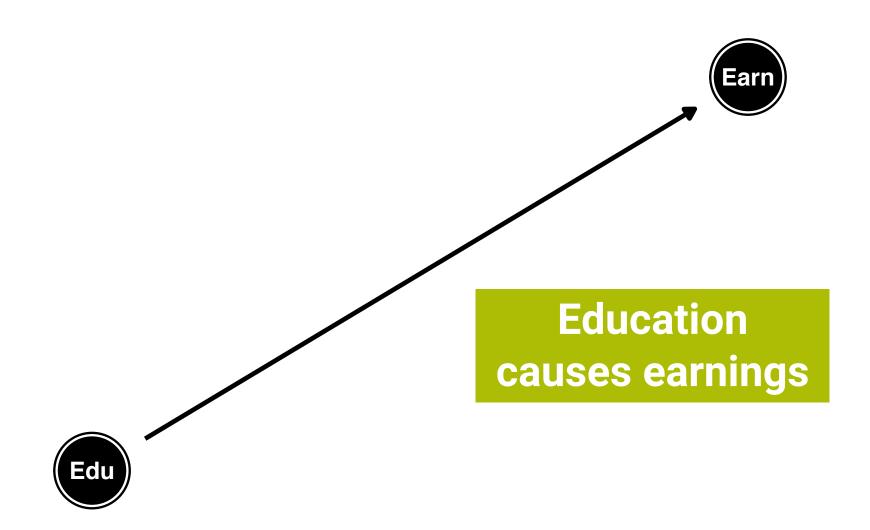
Socioeconomic status

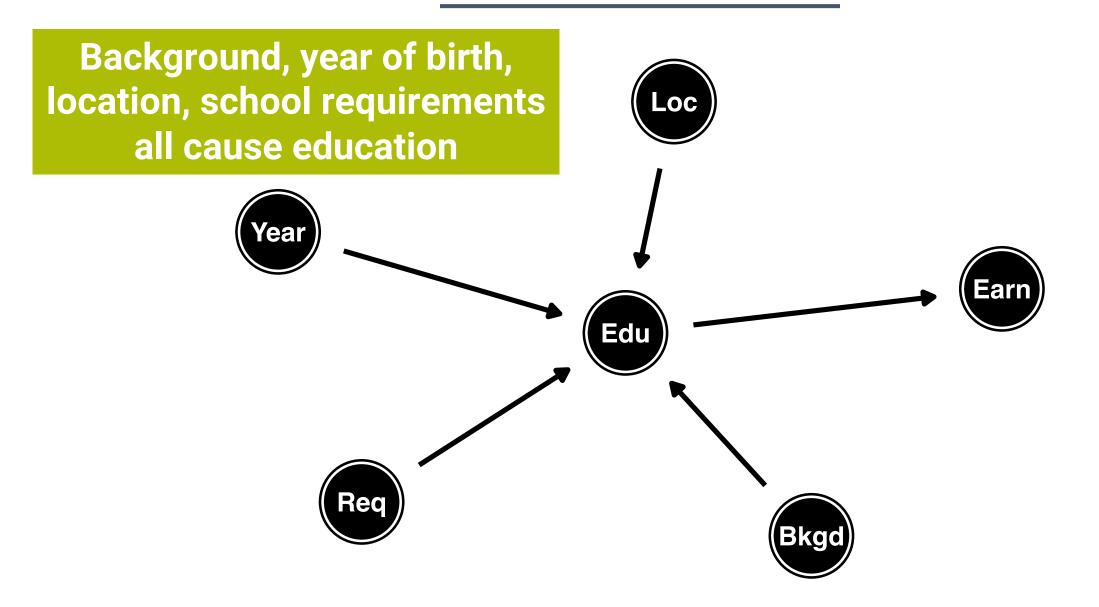
Year of birth

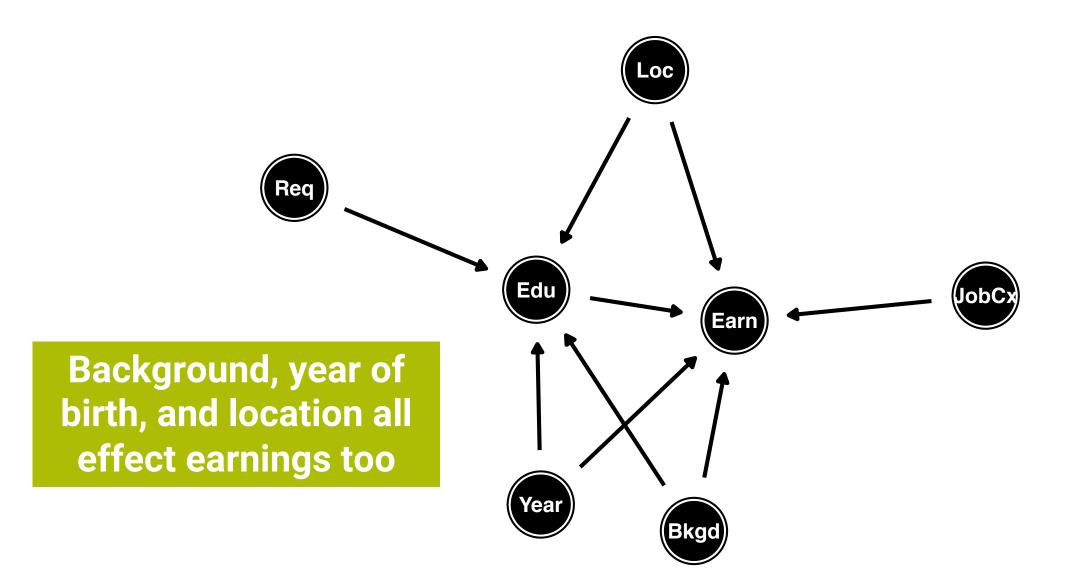
Compulsory schooling laws

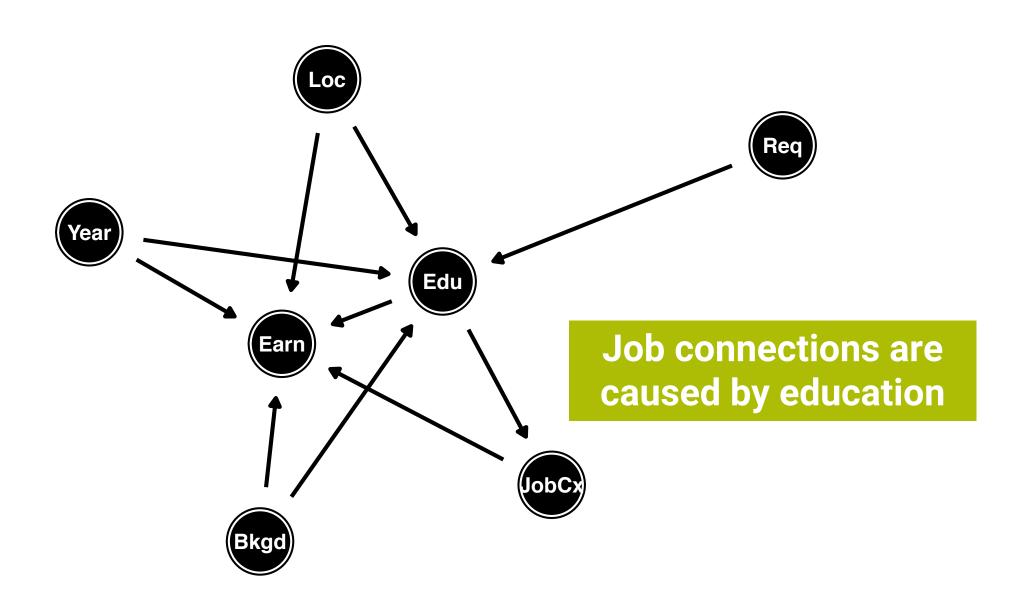
Job connections

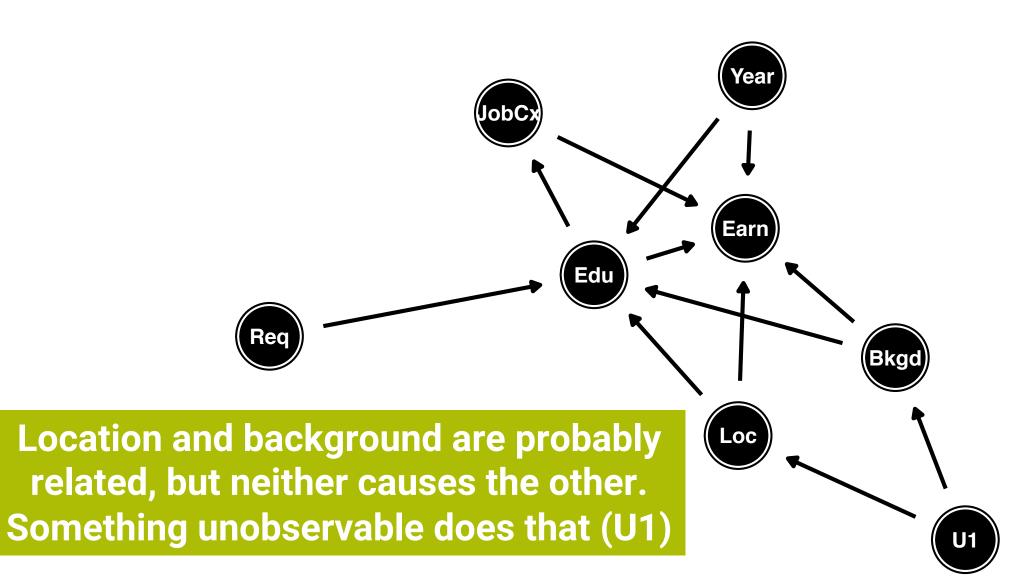
Background



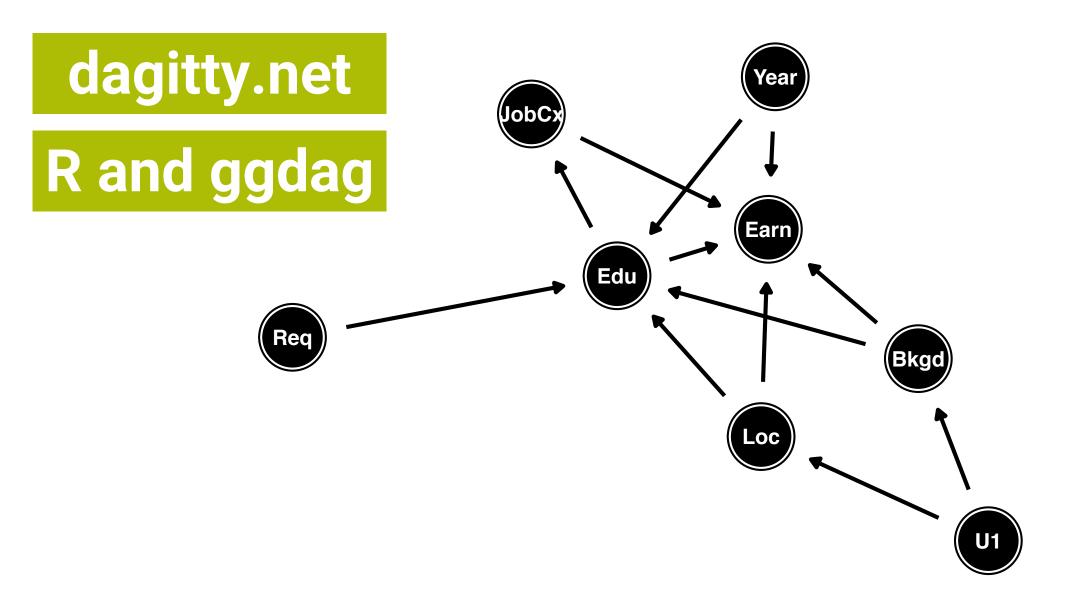








LET THE COMPUTER DO THIS



YOUR TURN

Does a daily glass of red wine make you live longer?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

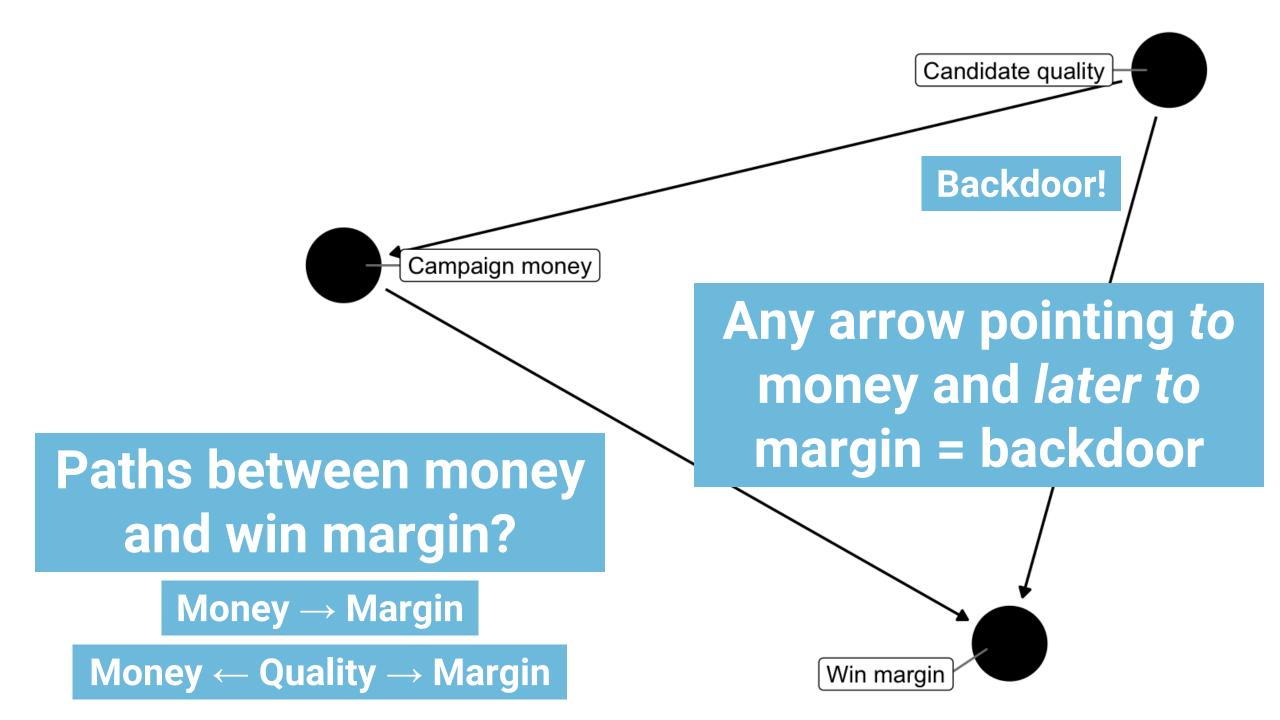
Use dagitty.net and R

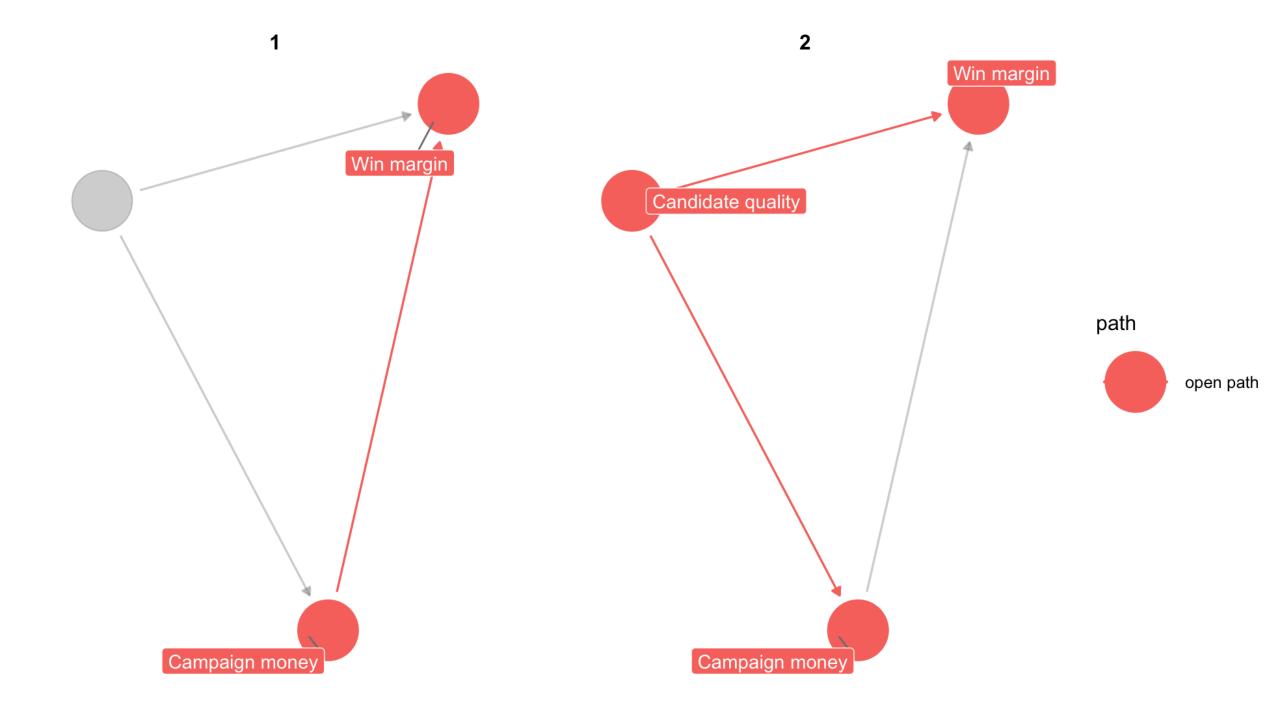
BACKDOORS AND ADJUSTMENT

ISOLATE / IDENTIFY

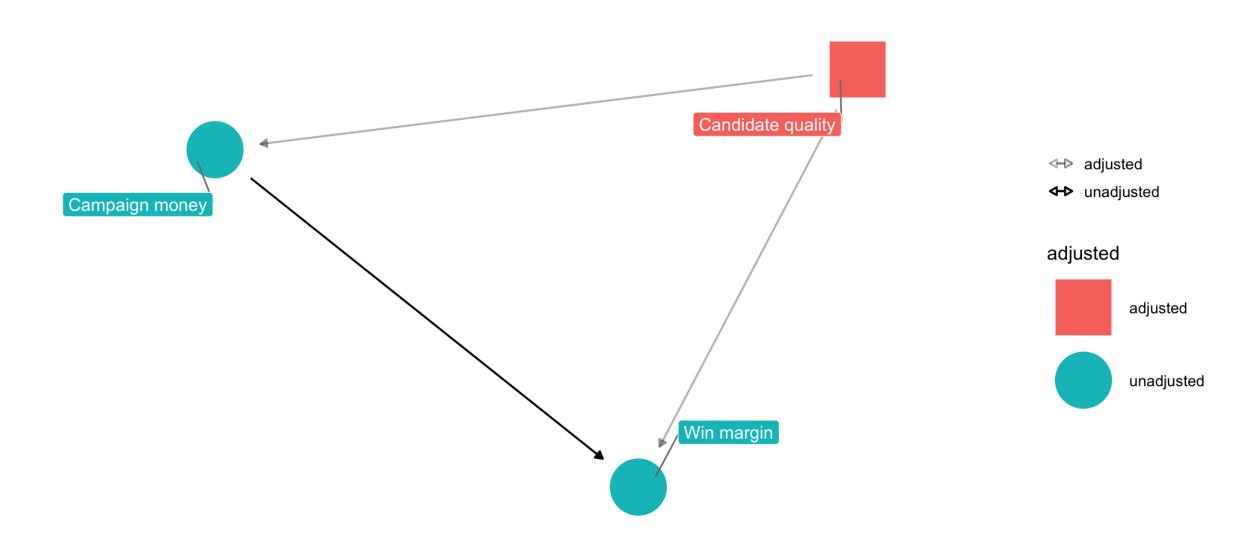
Goal of causal inference is to isolate specific effects

There's not always a single path between treatment and outcome

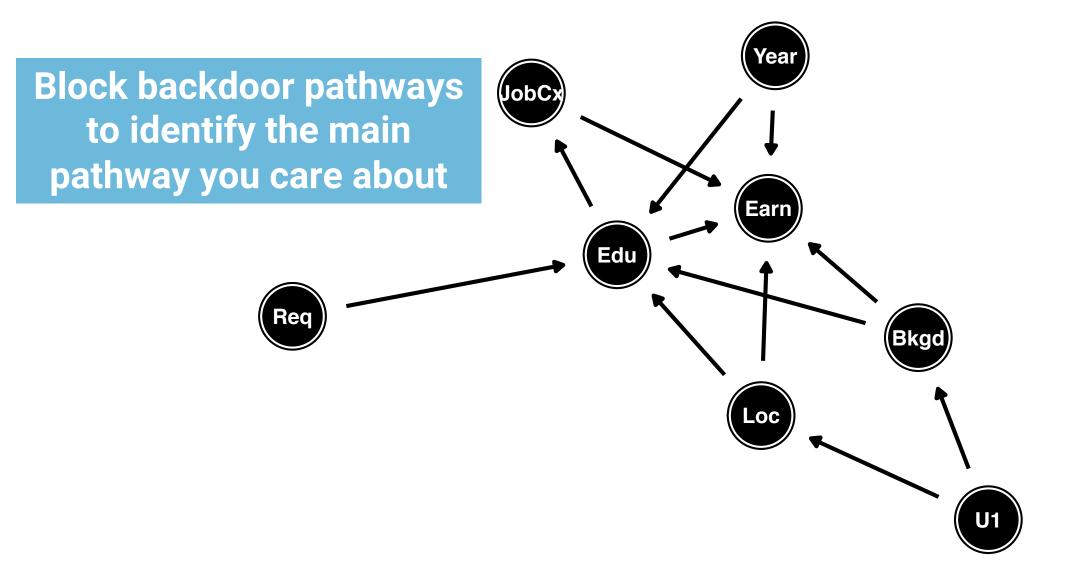




CLOSE BACKDOOR PATHS



4. MEASURE AND CONTROL FOR STUFF



ALL PATHS

Education → **Earnings**

Education → **Job connections** → **Earnings**

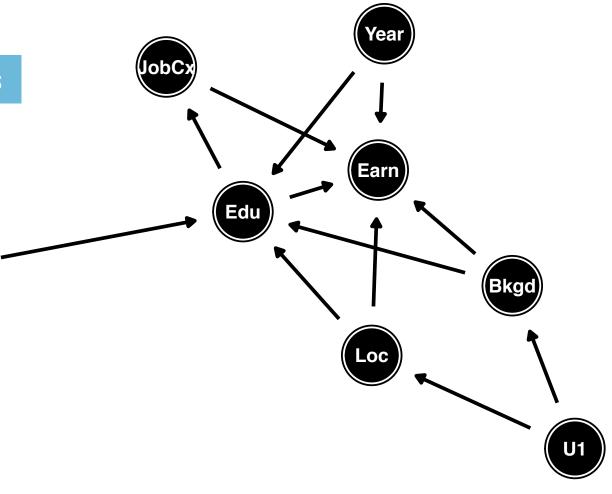
Education ← **Background** → **Earnings**

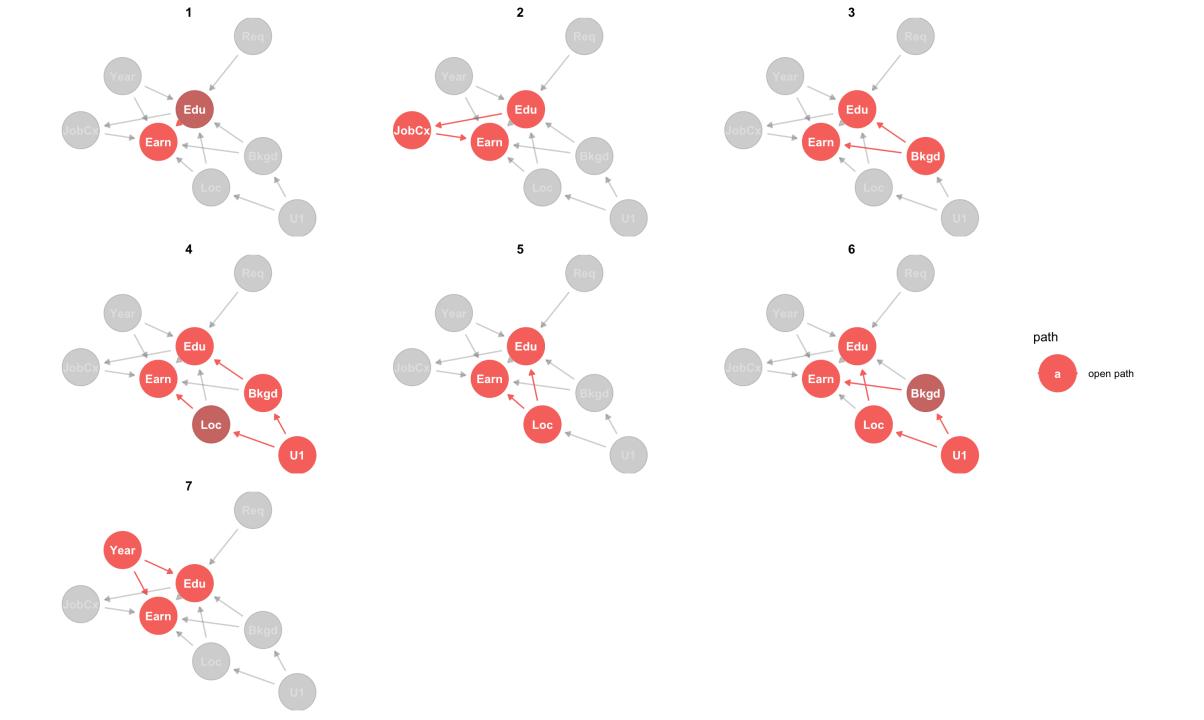
Education \leftarrow Background \leftarrow U1 \rightarrow Location \rightarrow Earnings

Education ← **Location** → **Earnings**

Education ← Location ← U1 → Background → Earnings

Education ← **Year** → **Earnings**





CLOSING DOORS

Education → **Earnings**

Education → **Job connections** → **Earnings**

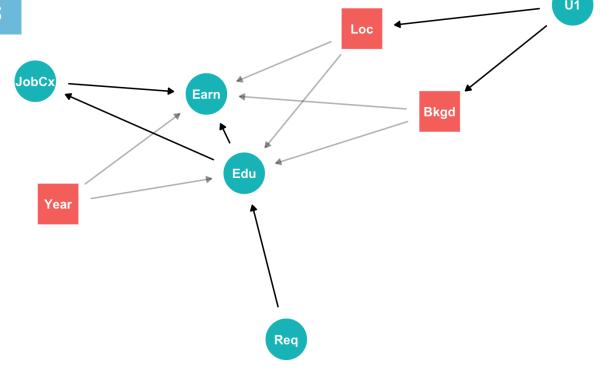
Education ← **Background** → **Earnings**

Education ← **Background** ← **U1** → **Location** → **Earnings**

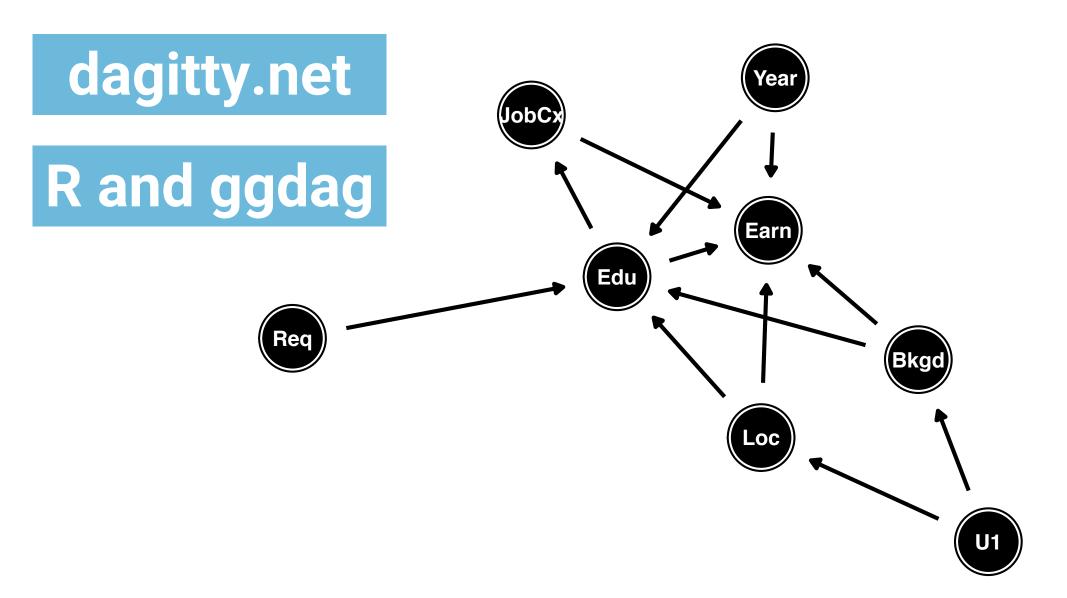
Education ← **Location** → **Earnings**

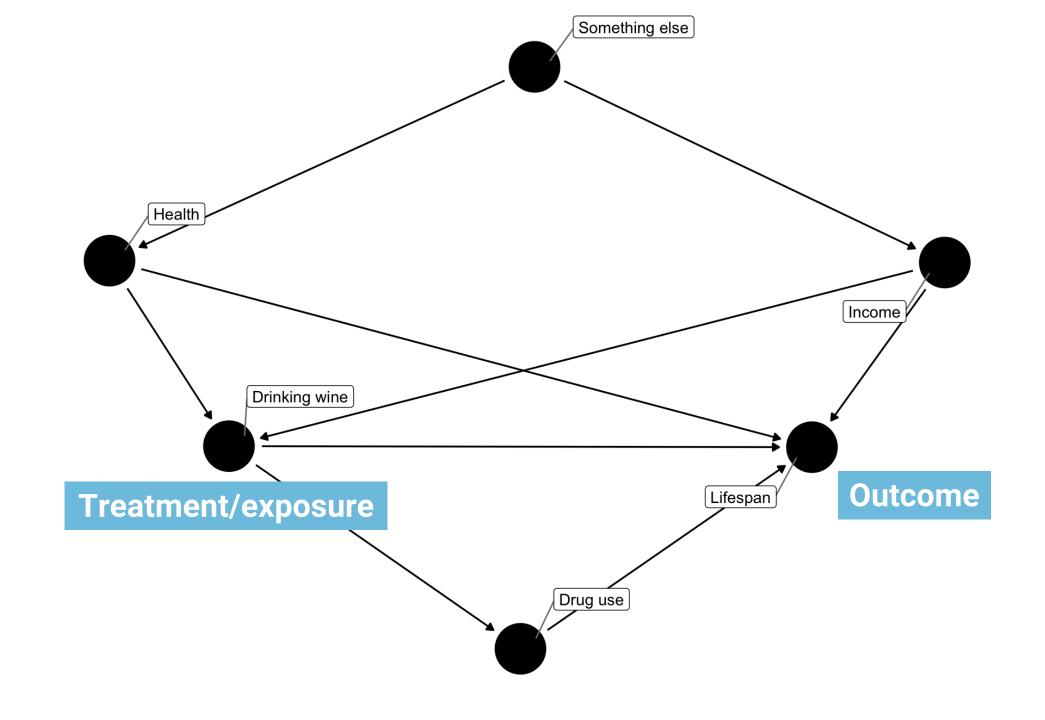
Education ← Location ← U1 → Background → Earnings

Education ← **Year** → **Earnings**



LET THE COMPUTER DO THIS AGAIN





Wine → Lifespan

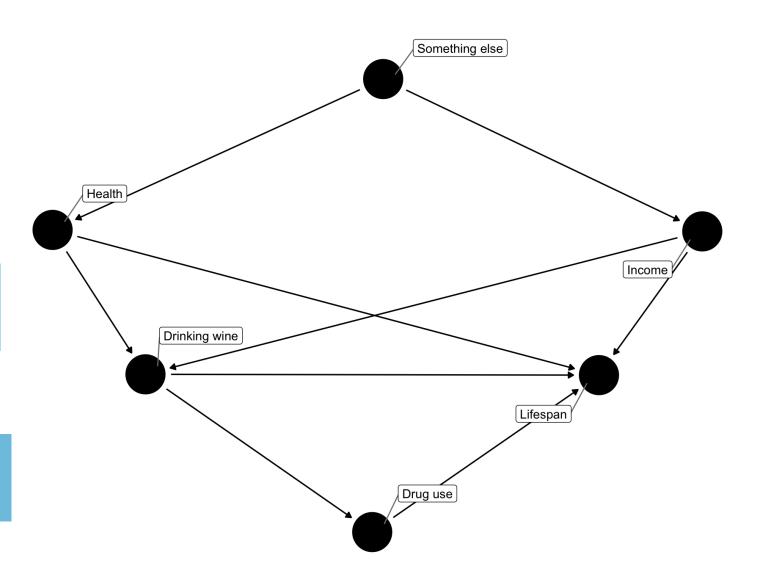
Wine → Drugs→ Lifespan

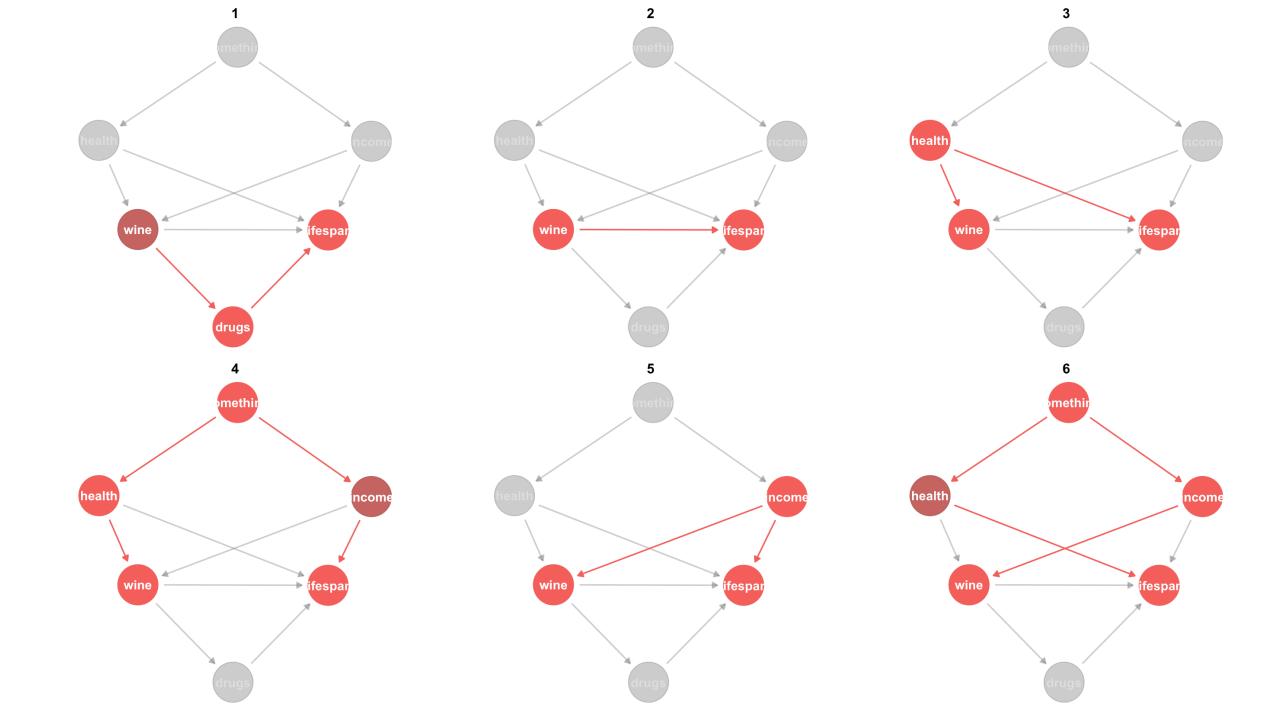
Wine ← Health → Lifespan

Wine ← Health ← Something → Income → Lifespan

Wine ← Income → Lifespan

Wine ← Income ← Something → Health → Lifespan





Wine → Lifespan

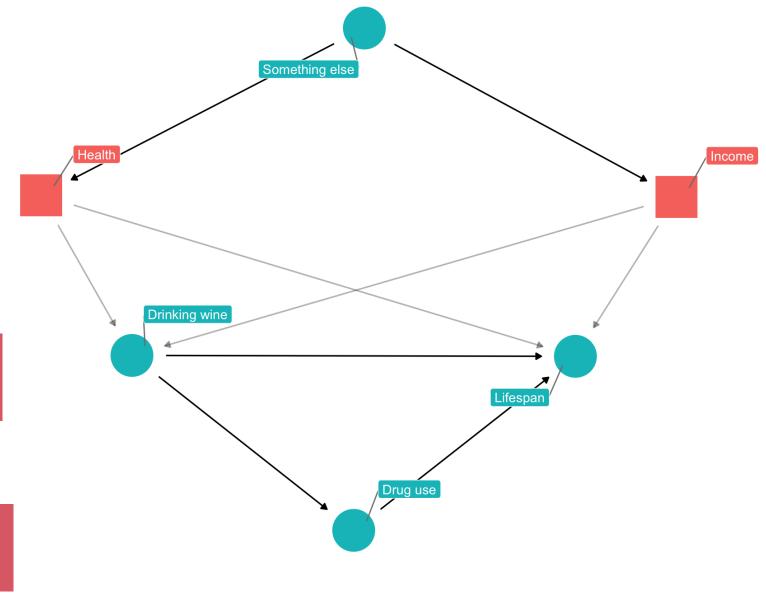
Wine → Drugs→ Lifespan

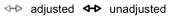
Wine ← Health → Lifespan

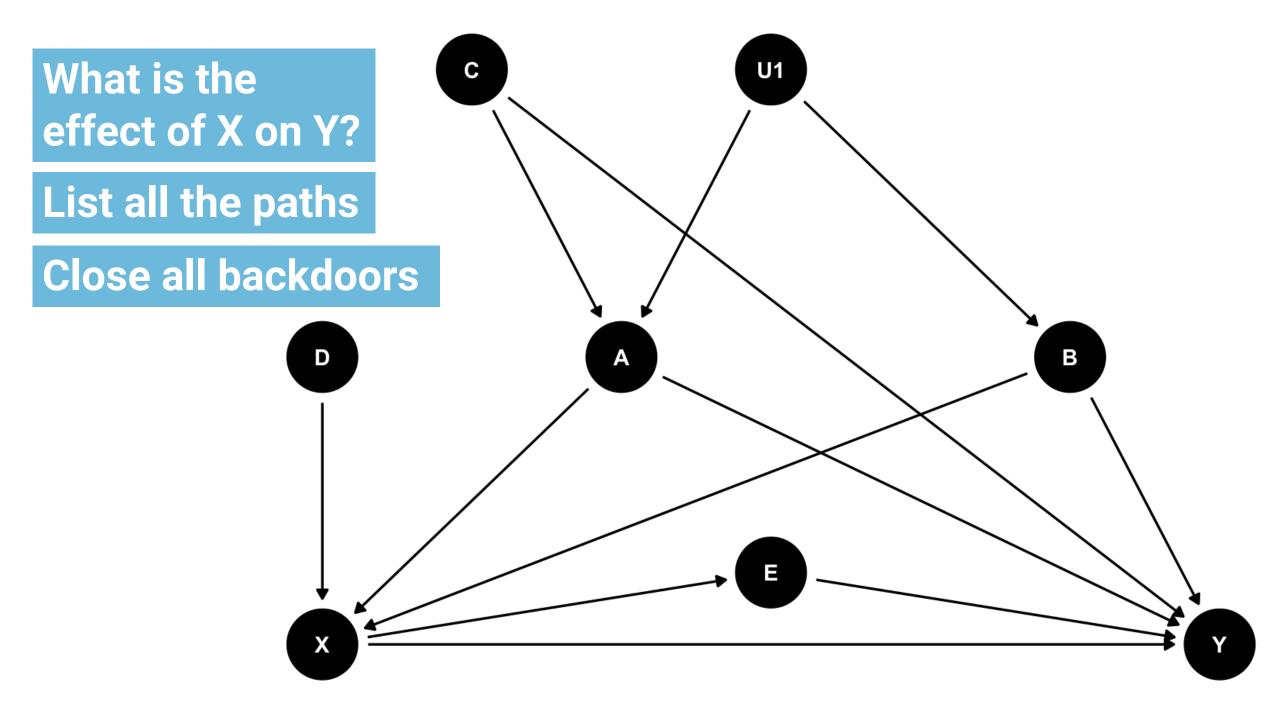
Wine ← Health ← Something → Income → Lifespan

Wine ← Income → Lifespan

Wine ← Income ← Something → Health → Lifespan





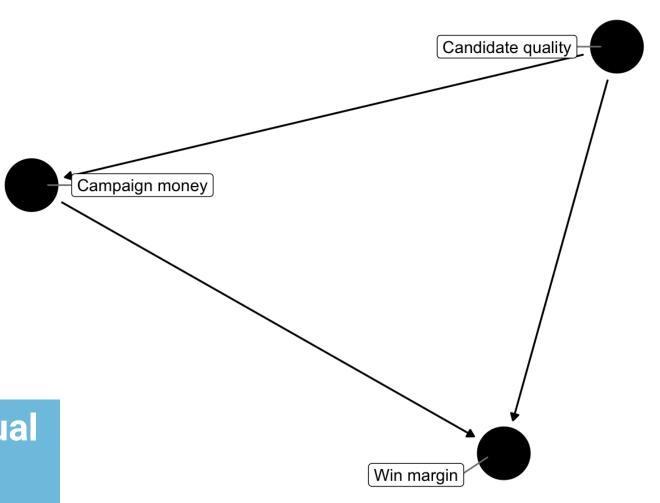


ADJUSTING & CONTROLLING

Find what part of X (campaign money) is explained by Q (quality), subtract it out. This creates the residual part of X.

Find what part of Y (the win margin) is explained by Q (quality), subtract it out. This creates the residual part of Y.

Find relationship between residual part of X and residual part of Y.
This is the causal effect.

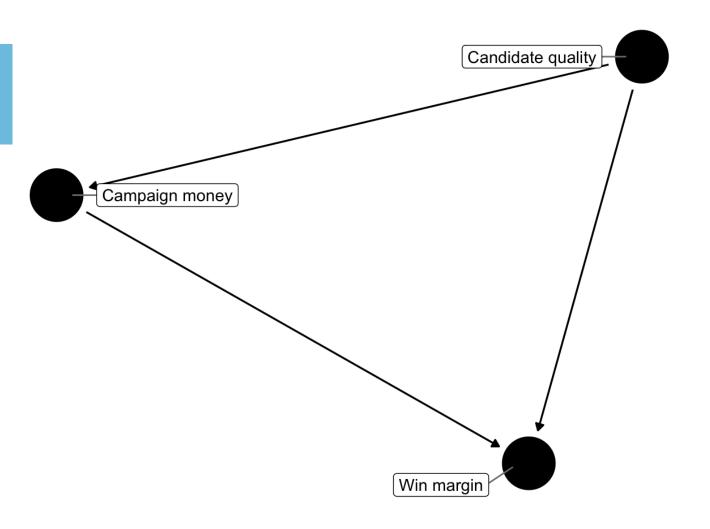


ADJUSTING & CONTROLLING

We're comparing candidates as if they had the same quality

We remove differences that are predicted by quality

Holding quality constant



HOW TO ADJUST?

Include term in regression

Win margin = $\beta_0 + \beta_1$ Campaign money + β_2 Candidate quality + ϵ Win margin = $\alpha + \beta$ Campaign money + γ Candidate quality + ϵ

Create similar subsamples

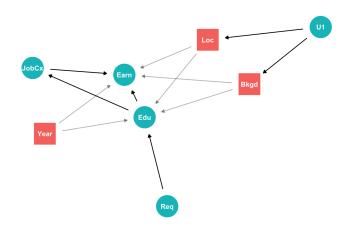
(LaLonde example)

CLOSING DOORS

Earnings =
$$\beta_0 + \beta_1$$
Education+
 β_2 Location + β_3 Background + β_4 Year + ϵ

Earnings = $\alpha + \beta$ Education+

 $\gamma_1 \text{Location} + \gamma_2 \text{Background} + \gamma_3 \text{Year} + \epsilon$



PRACTICE!

Go to andhs.co/nyt and read the article

Pick one of the causal claims in the article

(There are a lot! Look for words like "improve", "affect", and "reduces)

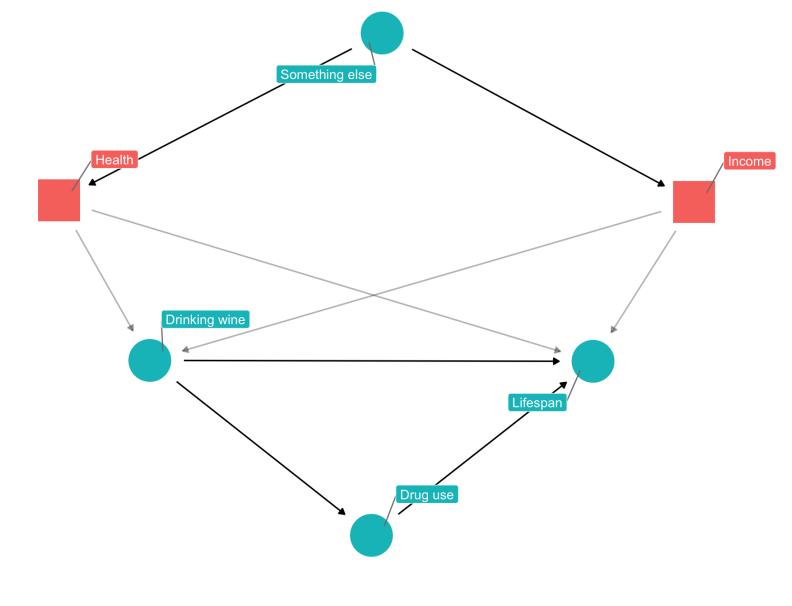
Draw a diagram for that causal claim

Determine what needs to be controlled for to identify the effect

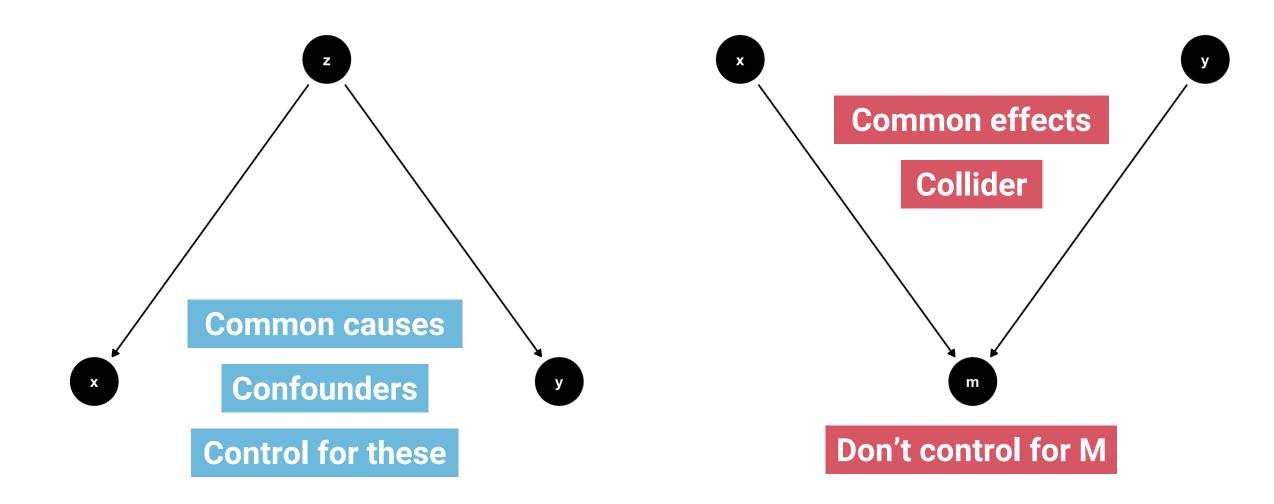
Do another claim if time

BAD CONTROLS

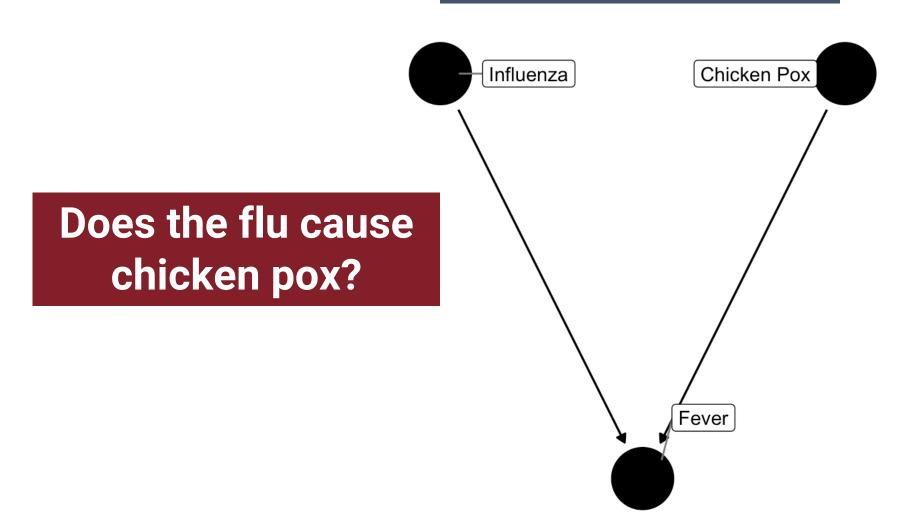
What would happen if we controlled for drug use?

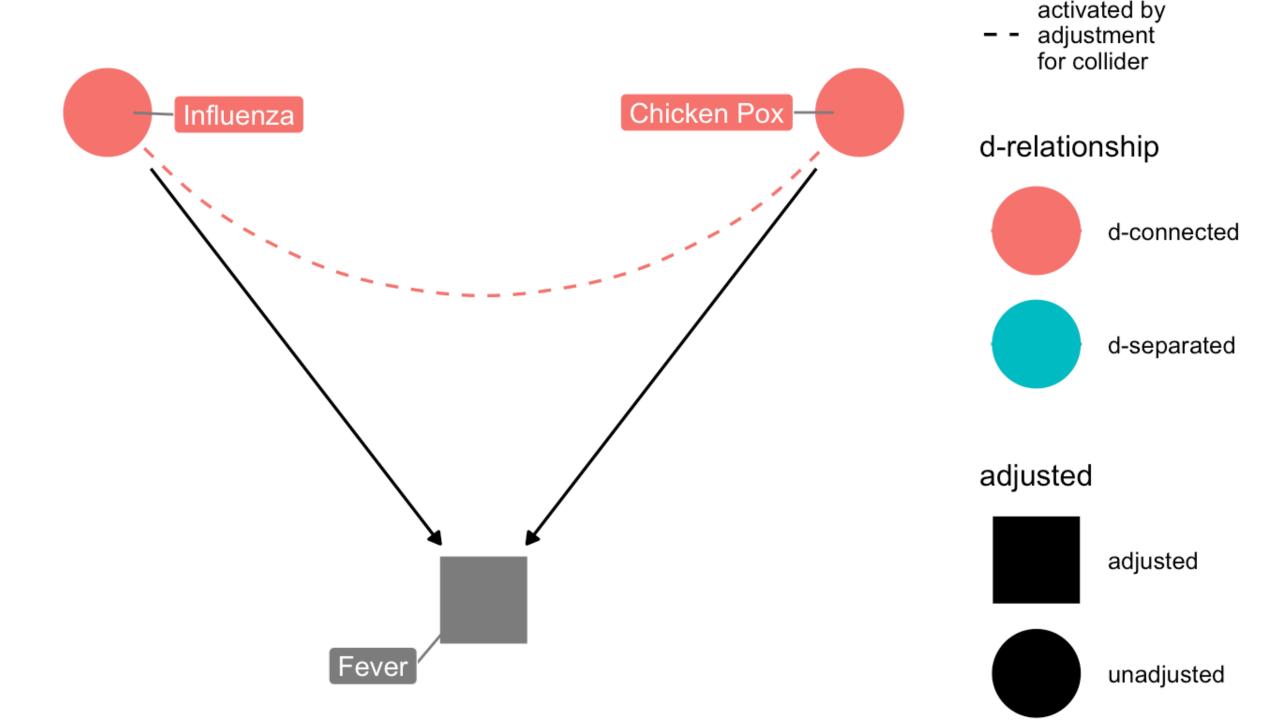


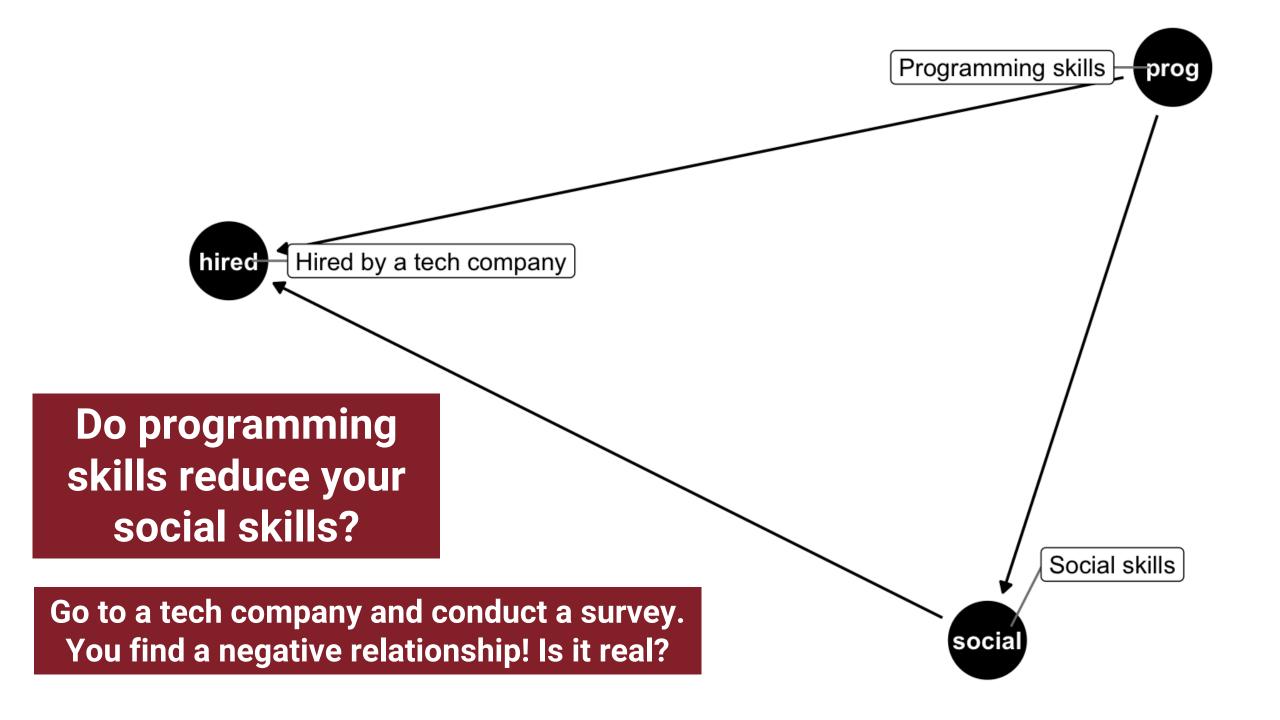
OVERCONTROLLING AND COLLIDERS

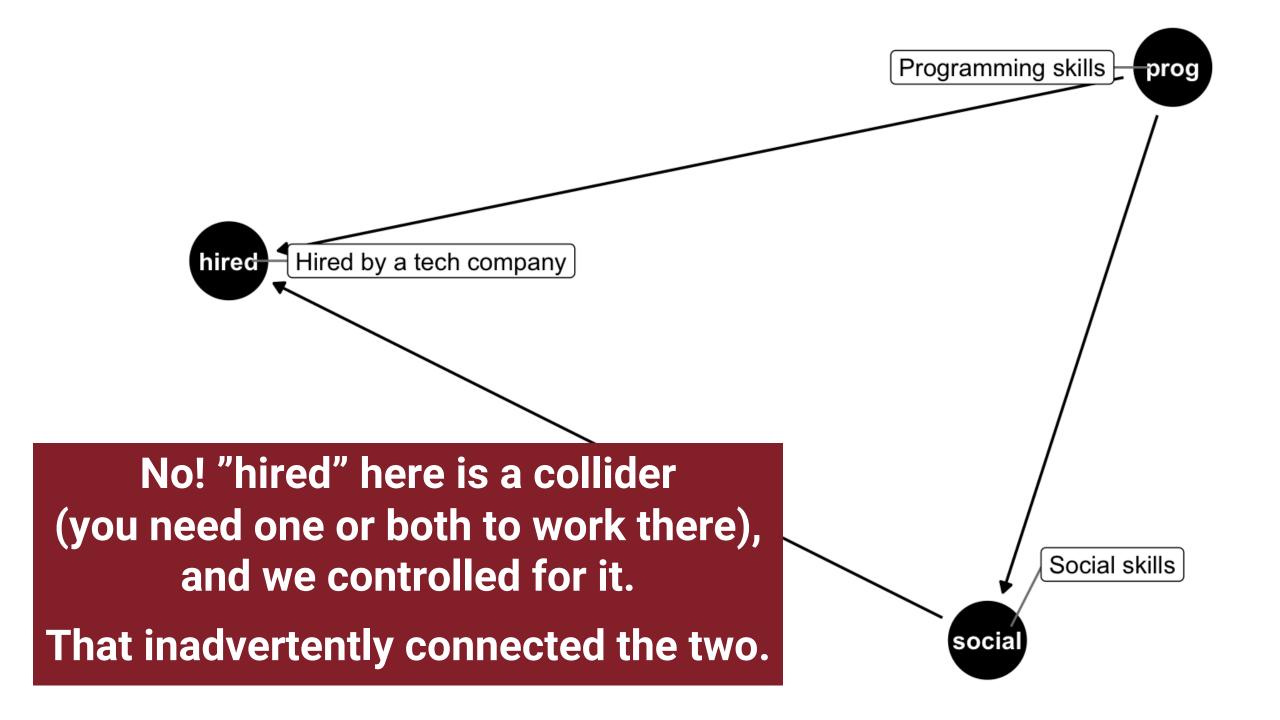


OVERCONTROLLING AND COLLIDERS







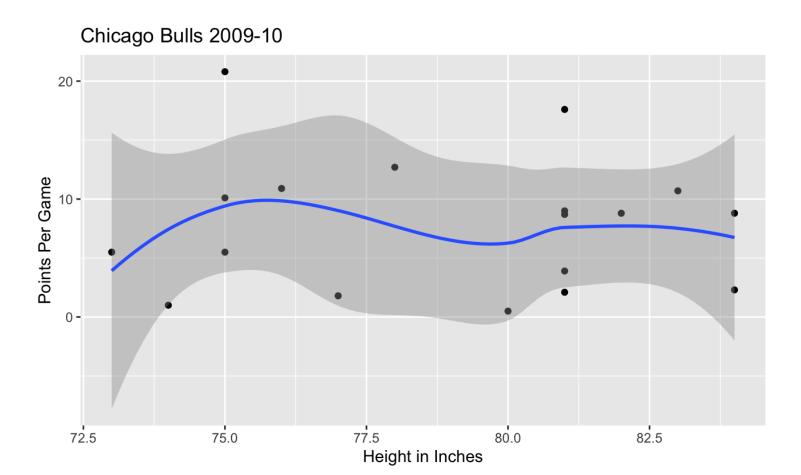


Colliders can create fake causal effects

Colliders can hide real causal effects

Height is unrelated to basketball skill!

...among NBA players

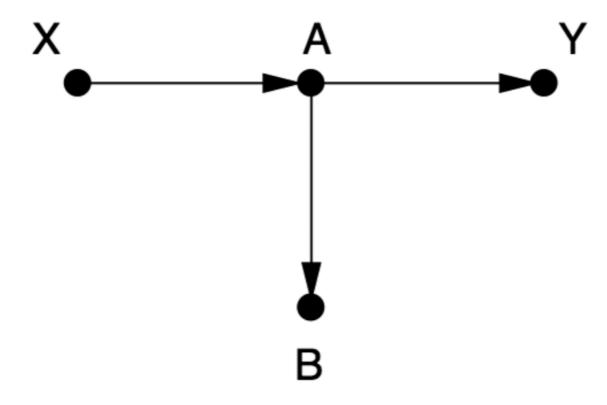


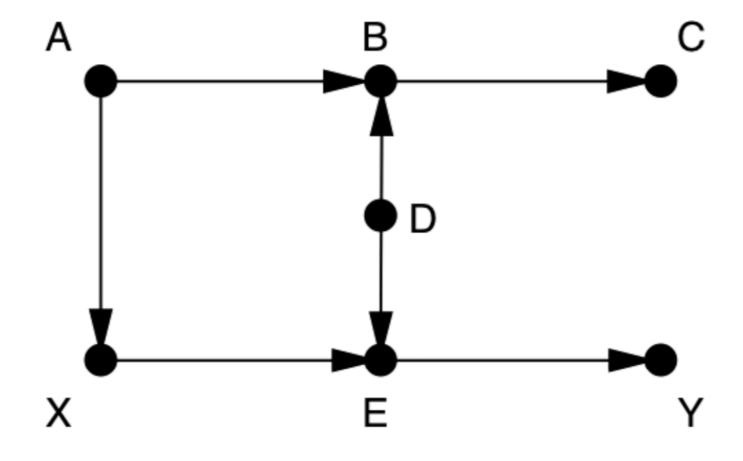
Interested in effect of gender → discrimination → wage

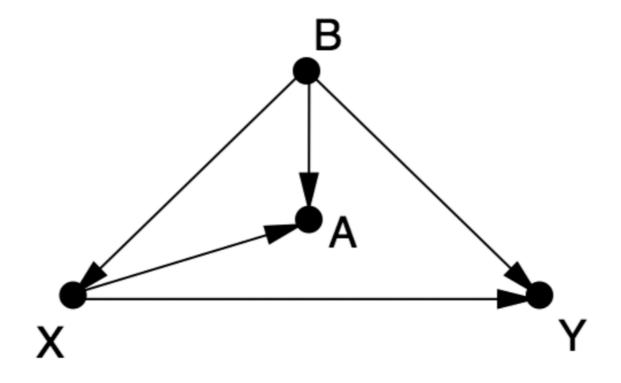
Should you control for occupation?

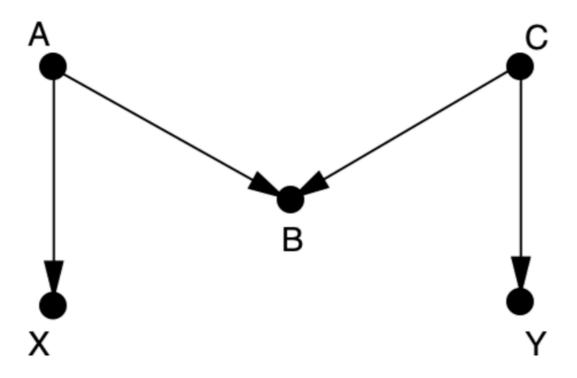
iscri gender wage abil occup

Front doors/Open back doors/Closed back doors
gender → discrim → wage
gender → discrim → occup → wage
discrim ← gender → occup → wage
discrim ← gender → occup ← abil → wage
gender → discrim → occup ← abil → wage









POTENTIAL OUTCOMES

Next time!

ATE

ATT (TOT)

ATU (TUT)

QUESTIONS